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Abstract. In this paper we investigate the behavior of moderate size two-dimensional classical arrays of
Josephson junctions in presence of an external oscillating field. We have included in the model the effects
due to mutual inductance terms, and we have employed an explicit set of differential equations. We have
found that the discretization parameter βL – i.e. the coupling term due to the inductance of the loops –
is the most important parameter to determine the height of the Shapiro steps for a given amplitude and
frequency of the rf-bias. The amplitude of the Shapiro steps in the case of zero frustration as a function
of the coupling term shows a remarkable minimum for intermediate values when we retain all terms of the
full model with mutual inductances, while the limits for very large and very small values of βL they are the
same of the single Josephson junction. For the case of frustration 1/2 the Shapiro step becomes smaller
in the rigid limit (i.e., small βL) as expected for the XY model, and tends to the limit value of the single
junctions for the decoupled case (i.e., large βL).

PACS. 85.25.Am Superconducting device, characterization, design, and modeling –
85.25.Dq Superconducting logic elements and memory devices

1 Introduction

Planar arrays of small Josephson junctions driven by a
rf bias current have been extensively investigated both for
applications and for a deeper understanding of the proper-
ties of nonlinear oscillators. Indeed, rf-induced states such
as Shapiro steps have been observed. They appear as hori-
zontal branches in the current voltage (IV) curves at volt-
ages nNrhν/2qe (n and q are integers, h is the Planck
constant, ν is the frequency of the applied radiation, e is
the elementary charge, Nr is the number of rows of the
array). These steps are usually classified according to the
integers n and q. The behavior is much richer than that
observed in single Josephson junctions, suggesting that a
new, and presumably more complicated, mechanism is at
work in the underlying dynamics [1–3].

Giant Shapiro steps appear at the fundamental fre-
quency (n = 1, q = 1) in zero external field and can
be ascribed to collective modes whose dynamics is closely
related to the single junction dynamics: each junction
exactly follows the rf drive. Subharmonic Shapiro steps
(n = 1 and any q) appear also in zero field, and the ori-
gin is known to be due to boundary effects [4]. Fractional
Shapiro steps (any n and q > 1), finally, arise in presence
of magnetic field only; they are due to the commensura-
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bility between the pattern of vortices induced by the fields
and the array [5].

The difficulties to investigate two-dimensional arrays
can be grouped in three classes:

– An analytical insight is very difficult if the coupling
due to the inductance is included: The resulting model
is a set of coupled ordinary differential equations that
has not a simple structure. The most important re-
sults have been obtained for the cases in which the
dynamics can be reduced to that of simpler systems,
such as SQUIDs, square four junction cells, and single
junctions [4,6].

– The integration time for numerical investigation in-
creases rapidly with the size of the array. Various ap-
proximations have been proposed to simplify the prob-
lem. The most used approximation has been the zero
inductance limit (the so called XY model, for a discus-
sion see Ref. [7]), and the more sophisticated nearest
neighbor inductance models (NS model [8]).

– The large number of parameters in the model makes
difficult the exhaustive exploration of the dynamics
and the understanding of the general behavior of the
array.

In spite of the difficulties, some understanding has
been gained. It has been proved that zero field sub-
harmonic steps arise from collective behavior [5,9,10].
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Moreover, the arrays have been shown to behave like small
inductance SQUIDs when the applied rf current amplitude
becomes large [11]; the relevant parameters are the critical
currents of the junctions perpendicular to the bias and the
equivalent inductance’s of the junctions. Numerical simu-
lations have also shown that for large arrays subharmonic
steps disappear [3]. Giant and Fractional Shapiro steps
have also been extensively investigated and the behavior
of the steps height versus the rf current amplitude have
been found in various limits [3,11] (see also Marino [12]
for the high frequency limit).

Many investigations have been carried out in the zero
inductance limit, i.e. neglecting the effects of the field gen-
erated by the currents (XY models), or at most including
only the field generated in the nearest loop (Nakajima-
Sawada model, NS [8]). In recent years, however, it has be-
come clear the importance of self-field effects; approaches
with the full inductance matrix have been proposed and
new types of dynamics have been shown to arise [7,13–15].
For the rf driven case, SQUIDs have been studied includ-
ing the inductance effects [11,16]. In particular Vanneste
et al. [16] have shown, both experimentally and numeri-
cally, how the voltage versus magnetic field characteristics
of an overdamped SQUID with rf bias current depends
upon the inductance parameter.

In this paper we will use an approach to the modeling
of the full mutual inductance effects in planar arrays that
results in an explicit set of differential equations; such ap-
proach was also proposed by Phillips et al. [15] but an
implicit method was used to investigate large array sizes.
Here we will use the explicit method because for relatively
small array size (see the discussion in Sect. 2) it signifi-
cantly shorts the computing time. We will investigate the
behavior of the locking range versus the self-inductance
parameter βL. In doing so we extend some previous re-
sults obtained by Phillips et al. [15] to larger βL values. To
gain a deeper insight of the underlying dynamics we will
show the cases in which the dynamics can be explained
in terms of dynamics of simpler systems and point out
regions in which the self-field generates internal modes.
Since the internal motion of fluxons in rf-induced steps in
presence of frustration has been numerically investigated
by reference [5] and experimentally with the LTSEM anal-
ysis [17], for frustrated arrays we will concentrate on the
overall behavior of the amplitude of the steps and we will
not show studies of the internal dynamics.

The paper is organized as follows: in Section 2 we will
describe how we have included mutual inductance terms
and we will give the set of the simulated equations. In Sec-
tion 3 we will focus on the Shapiro steps and give some
analytical results for their amplitude. In Section 4 we will
show the results of numerical simulations to check the an-
alytical predictions and to investigate the system outside
the region of parameters where analytical predictions are
expected to work. The results will be summarized in Sec-
tion 5.
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Fig. 1. A schematic view of the two-dimensional array. The
gap between the thick lines represents a Josephson junction.
The bias current is injected parallel to the i direction.

2 A model for the array with mutual
inductance terms

In the following we will use a set of Nr×Nc explicit equa-
tions (where Nr is the number of vertical junctions in each
row of the array and Nc is the number of horizontal junc-
tion in each column), retaining all the mutual inductance
terms. For completeness, we show in detail how we have
included the mutual inductance terms. This derivation fol-
lows the derivation of reference [15], a somewhat differ-
ent derivation of the same explicit scheme can be found
in [18]. Domı́nguez and José have shown how the equa-
tions depend on the choice of the gauge; the equations
used in this paper correspond to the temporal gauge [5].
A schematic drawing of a two-dimensional plane array is
shown in Figure 1: the thick lines are the superconductors,
the gaps represent the junctions. In the following we sup-
pose all the junctions to be identical. To derive the equa-
tions, we first compute the current across a branch Ib

i,j in
terms of the Josephson relation between the phase across
the junctions, ϕi,j ; normalizing the current respect to the
critical current of the junctions I0 and the time respect
to h̄/2eRI0 (R is the normal resistance of the junctions
due to the quasiparticle tunneling) and in the overdamped
limit, the current reads [19]

Iki,j = sinϕki,j + ϕ̇ki,j . (1)

The indices i = 1, ..., Nr and j = 1, ..., Nc denote the mesh;
k indicates the direction of the branch, horizontal (k = 0)
or vertical (k = 1). Here, sinϕki,j is the current through
the Josephson element, and ϕ̇ki,j is the current through a
resistor that mimics the quasi-particle terms. To satisfy
the Kirchhoff law for the currents in each node we define
the mesh currents Isi,j connected to the branch currents
by the relationship (see Fig. 1):

Iki,j = δ1,k
(
Isi,j − Isi,j−1 + γ

)
+ δ0,k

(
Isi−1,j − Isi,j

)
. (2)
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δi,j is the Kronecker operator, γ denotes the normalized
bias current injected in the top nodes and extracted from
the bottom nodes, this choice being similar to that referred
as i) in Appendix C by Domı́nguez and José [20]. As noted
in the latter paper, this choice is irrelevant when all mu-
tual inductances are included because all choices lead to
the same physical result, but this particular choice is the
most convenient to compare the effect of full mutual in-
ductance models with truncated matrix models. If there
is an ac bias added to the dc bias, the current term γ can
be written as:

γ = γdc + γrf cos(ωt). (3)

It is more convenient to introduce the vectors Ib (whose
components are the branch currents Iki,j , the LHS of equa-
tion (2)), Is (whose components are the mesh currents
Isi,j) and γ (whose component are γ in correspondence of
a vertical junction and 0 otherwise). With the help of these
vectors one can rewrite in a matrix form equations (2,3):

Ib = K̂Is + γ (4)

The fluxoid quantization rule for each mesh gives another
set of equations, one for each mesh:

Σϕ =
2π
Φ0
φTOT =

2π
Φ0

(
φext + φinduced

)
(5)

where the sum Σ spans over the junctions of a mesh,
φTOT is the total flux in the mesh due to the external flux
(φext) and to the field induced by the currents flowing in
all meshes of the array (φinduced). Normalizing the flux
respect to the elementary flux quantum Φ0 = h/2e and
with the use of the SQUID parameter βL = 2πL′I0/Φ0

(L′ is the self-inductance of the SQUID), equation (5) can
be rewritten in a matrix form as:

M̂ϕ = 2πf + βLL̂Is + βLΓ̂γ (6)

where M̂ performs the sum of the phases around a mesh,
i.e. the left hand side of equation (5), f is a vector that rep-
resents the normalized external field in each mesh (frus-
tration). The last two terms are the contributions to the
induced flux due to the current Is and the bias currents
γ in all the meshes of the array. These contributions are
introduced via the matrices (normalized to the self induc-
tance of the plaquette, L′) L̂ and Γ̂ , that we therefore
shall call the mutual inductance matrices. An expression
for such matrices will be calculated below. equation (6)
can be easily inverted to give explicitly, with the help of
equation (4), the dependence of the branch currents as a
function of the phases:

Ib = K̂

[
− 1
βL
L̂−1

(
M̂ϕ− 2πf

)
− L̂−1Γ̂γ

]
+ γ, (7)

that together with equation (1) gives a set of explicit dif-
ferential equations.

If one retains only self-inductance terms the matrix L̂
reduces to unity and the vector Γ̂γ vanishes. This corre-
sponds to the NS approximation [8], sometimes referred as

the nearest neighbors approximation. Equation (7) can be
integrated directly and does not require to invert a matrix
at each time step as in other schemes [5,15] and thus cuts
down the computing time. Still to apply the matrix L̂−1M̂
to the vector ϕ is the most time-consuming task, requiring
O((Nr × Nc)2) operations for each time step, in contrast
to the NS algorithm, or any truncation of the matrix L̂,
that requires only O(Nr×Nc) operations. The time to in-
vert the matrix at the beginning of the computation is in
this scheme completely irrelevant, in contrast to the im-
plicit algorithms [15]. On the other hand implicit schemes
can be significantly accelerated for large Nr ×Nc exploit-
ing the symmetry of the matrix L̂: It is possible to employ
Fast Fourier Transform routines for matrix multiplication,
that require only O([Nr × Nc]log2[Nr × Nc]) operations.
Unfortunately, these routines must be repeated, 10 − 20
times to converge [20,21], thus making implicit schemes
slower than the integration of the explicit equations for
relatively small Nr × Nc (up to Nr × Nc ' 100). Thus
we have preferred to use the explicit method, although it
has the additional disadvantage to require larger memory
storage (of the order of (Nr ×Nc)2).

To write explicitly the matrix L̂ it is necessary to com-
pute the mutual inductance between two loops 1 and 2:

L1,2 =
1

L′aiaj

µ0

4π

∫
ai

∫
aj

∮
1

ds1 ·
∮

2

ds2

r1,2
daidaj (8)

where ds1,2 are elements of the circuit parallel to the axis
of the wires; the variable r1,2 is the distance between them.
The variables ai,j are the conductor cross section areas.
This expression clearly diverges if the loops coincide; in
this case the well-known formulas for self-inductance can
be used, the formula actually used depends in detail upon
the geometry of the wires, for a square loop with cylindri-
cal wires the self-inductance is given by [22]:

L′ =
2µ0R

π

[
ln
(

2R
a(1 +

√
2)

)
+ a/R+

√
2− 2

]
, (9)

where R is the length of the branches, and a is the radius
of the wires. For a square washer it reads instead [23]:

L̃ =
2µ0R

π

[
1.15 ln

(
a/R+ 0.096

a/R

)
+ 1.96

]
(10)

where again R is the branch length, and a is the washer
width. In this work we have extensively used equation (9),
but we have also checked with equation (10) that the re-
sults do not change qualitatively.

To compute the other terms of the mutual inductance
matrix we note that L̂ = M̂L̂bM̂

T and Γ̂ = M̂L̂b where
L̂b is the branch-branch inductance matrix. So the loop-
loop integral can be divided in the branch-branch parts.
We have assumed an uniform distribution of the currents
in the film and, moreover, we have assumed the current
to flow in filamentous wires (a→0; this is a good approx-
imation in most practical cases as shown in Ref. [24]).
The matrix L̂ will not change significantly for R/a � 1,



26 The European Physical Journal B

-3
-2

-1
0

1
2

3
4

I

-3 -2 -1 0 1 2 3 4

J

0

0.2

0.4

0.6

0.8

1

m
ut

ua
li

nd
uc

ta
nc

e

Fig. 2. Loop-loop mutual inductance versus loop distance. The
ratio of the distance between the meshes and thickness of the
wires is R/a = 11.

therefore we have set R/a = 11 in all the numerical cal-
culation (corresponding to an empty hole 10 times larger
than the width of the films).

Under these approximations, the mutual inductance
between the branches k and n is given by the Neumann
formula

Lk,nb =
µ0

4π

∫
k

∫
n

dsk · dsn
rk,n

· (11)

A trivial simplification is that the only non-zero contribu-
tions are given by the branches lying on parallel lines.

The mutual inductance between two vertical branches,
whose coordinates are IR apart along x and JR apart
along y, thus reads

LVV
bI,J =

µ0

4π

∫ R

0

dy
∫ R

0

dy′
1√

(y′ − y + JR)2 + (IR)2
·

(12)
The integral can be explicitly evaluated:

LVV
bI,J =

µ0R

4π
[F (J + 1, I)− 2F (J, I) + F (J − 1, I)] (13)

where we have defined the function F (J, I) as:

F (J, I) ≡ J + (sinh−1)(
J
I

)−
√

(J2 + I2). (14)

For the mutual inductance of the horizontal branches the
formula is the same with I and J interchanged. We recall
that for I = J = 0 (coinciding loops) we use instead
equation (9) or equation (10).

The amplitude of the mutual inductance terms (in L′

units) as a function of the I and J coordinates (that count
the number of cells between the cell were the screening cur-
rent is circulating and the other cells) is shown in Figure 2.

We note that for the values we used the non-diagonal
terms (i.e. the terms not considered in the NS approach)
are always less than 14% of the main contribution.

3 Shapiro steps amplitude of dc-SQUID
driven by an rf signal

The amplitude of the phase-locked region of the steps as
a function of the other parameters of the system are an
important piece of information. Until now the effects of
the inductance parameter βL have not yet been completely
addressed. Preliminary results can be obtained from the
analysis of the SQUID. For a SQUID in the overdamped
limit the equations are obtained using the same procedure
as above, in normalized units [19]:

φ̇1 + sinφ1 = γ − 1
βL

(φ2 − φ1) +
2π
βL
f, (15)

φ̇2 + sinφ2 = γ +
1
βL

(φ2 − φ1)− 2π
βL
f. (16)

where the term γ includes both the dc and ac driving
current with normalized frequency ω, see equation (3).
The sum and difference of the two equations are:

(φ̇2 + φ̇1) + sinφ2 + sinφ1 = 2γ, (17)

(φ̇2 − φ̇1) + sinφ2 − sinφ1 =
2
βL

(φ2 − φ1)− 4π
βL
f.(18)

For f = 0, equation (18) is an autonomous damped equa-
tion that admits the solution φ1 = φ2. Inserting this sym-
metry in the first equation, each junction of the SQUID
obeys the equation of the single rf-driven single junction,
and therefore the amplitude of the rf-induced steps does
not depend on the inductive coupling βL. In the limit of
loosely coupled junctions (i.e. βL →∞) the left hand side
of equation (18) vanishes, and one can assume φ2 ' φ1.
Also for the rigid limit, βL,→ 0 the solution with almost
identical phases in the two junctions is the only solution
to prevent the left hand side of equation (18) from diverg-
ing, and therefore the behavior of the SQUID is analogous
to the single junction case. One could conclude that also
for larger arrays, in both limits of very small and very
large βL, the phases should be synchronized, no screen-
ing current develops in the system, and as far as the am-
plitude of the Shapiro steps is concerned, the arrays are
identical to the single junction. In fact for the case of fi-
nite βL, numerical simulations [7] have shown that in the
overdamped limit the screening currents are always neg-
ligible, and this results is valid also for arrays modeled
with the nearest neighbor approximation of the matrix L̂.
This result might be a consequence of the special sym-
metry of the equation that prevents the screening cur-
rent from appearing. When mutual inductance effects are
included the equations are not anymore symmetrical: a
junction close to the border will experience a different
field because the magnetic field due to the currents flowing
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Fig. 3. IV curve for a square 8 × 8 array. Parameters of the
simulations are: ω = 1, βL = 1, f = 0 (dotted line) and f = 1/2
(solid line).

on the left hand side will be larger than the field (of op-
posite direction) due to the currents flowing on the right
hand side. To make quantitative this argument we have
simulated equation (7) for different values of βL and dif-
ferent fields. The results are shown in the next section.

4 Numerical Results

We have integrated equation (7), using the mutual induc-
tance matrix described in Section 2 with R/a = 11. We
will here show the results for the frequency of the exter-
nal drive ω = 1, similar results have been obtained also
for higher values of the frequency. The dynamics showed
no significant qualitative changes for arrays larger than
6 × 6, up to 12 × 12 arrays. As considerably long inte-
gration times arose increasing the array size, we show the
results for a square 8 × 8 array. For the integration we
used a fourth order Runge-Kutta method; usual transient
time and voltage average time were t = 400 (normalized
units), we have used t = 0.05 as integration step; in the
stiff limits, such as for small βL, we have used shorter time
steps and longer transient times.

In Figure 3 we show the IV curves for an 8 × 8 ar-
ray to depict the qualitative behavior, also in presence of
magnetic field. The effect of the rf term results in zero
resistance branches called Shapiro steps. In the curves are
clear both the fundamental step and the appearance of
subharmonic steps. In this work we will focus on the steps
appearing at the fundamental frequency, i.e. at voltage ω
(in normalized units).

First, we have checked that in the rigid chain limit
(βL → 0) the full inductance model of the array described
by equation (7) is well approximated by the nearest neigh-
bor inductance model, or the NS model. In Figure 4 we
show the zero field amplitude of the steps versus the rf-
current γrf , we chose βL = 0.1, and ω = 1; circles and
squares are the results for the model of equation (7) and
the NS model. The two patterns are very close, thus con-
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Fig. 4. Amplitude of the Shapiro step at the fundamental
frequency versus the rf current amplitude γrf for a rigid 8× 8
array described by equation (7) (2) and the NS equivalent
equations (×). Parameters of the simulations are: ω = 1, βL =
0.1, f = 0.
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Fig. 5. Amplitude of the Shapiro step at the fundamental
frequency versus the rf current amplitude γrf for a square 8×8
array. Parameters of the simulations are: ω = 1, f = 0, βL =
0.1 (2), 6 (©), 1000 (×).

firming that the two models give the same results when
βL → 0. This is but a consequence of the fact that the self-
field effects are negligible in the small βL limit. Similarly,
the Bessel-like structure is in agreement with previously
analyses of the XY model [12,25].

In Figure 5 we show the Shapiro steps amplitude,
∆γdc, versus the value of the rf-current, γrf , for three dif-
ferent βy (the other parameters are: 8 × 8 array, ω = 1,
f = 0): it is clear that the Bessel-function behavior,
typical of the rigid limit βL → 0, disappears for weaker
coupling and a double maxima curve appears. The lower
step amplitude for higher βL is due to the progressive de-
coupling of the individual junctions, as will be explained
below. For still higher βL the results tend again to the
Bessel-type curve.



28 The European Physical Journal B

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
rf current amplitude, rf

0.0

0.2

0.4

0.6

0.8

1.0

1.2

st
ep

am
pl

itu
de

,
dc

L = 1000
L = 6
L = 0.1
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Fig. 7. Amplitude of the Shapiro step at the fundamental
frequency versus the coupling term βL for a square 8 × 8
array. Parameters of the simulations are: f = 0, ω = 1,
γrf = 0.2(2), 0.4(©). The lines correspond to the analytical
prediction of reference [25].

Figure 6 shows a similar behavior for the fully frus-
trated case (f = 1/2). Here a double bump arises also
in the rigid limit. Moreover, the Shapiro steps becomes
smaller decreasing the βL parameter. Inspection of the IV
curve showed that this is due to the contemporary pres-
ence of subharmonic steps.

In the above figures we see smaller amplitudes of the
Shapiro steps for intermediate couplings and zero field,
while we have observed a monotone behavior for the fully
frustrated case. We underline this behavior in Figures 7
and 8, where we show the Shapiro steps amplitude varying
βL for two rf current amplitudes γrf = 0.2, 0.4 (to check
that we are still in the linear regime and we can apply the
analysis carried out in Ref. [25]) and for fixed frequency
ω = 1. Let us begin our analysis from the unfrustrated
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Fig. 8. Amplitude of the Shapiro step at the fundamental
frequency versus the coupling term βL for a square 8 × 8
array. Parameters of the simulations are f = 1/2, ω = 1,
γrf = 0.2(2), 0.4(©).
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Fig. 9. Amplitude of the Shapiro step at the fundamental
frequency versus the order of truncation of the mutual induc-
tance matrix for a square 8× 8 array. NT = 0 corresponds to
the Nakajima-Sawada model, NT = 8 represents the full induc-
tance matrix for this array size. Parameters of the simulations
are: f = 0, ω = 1, βL = 6; γrf = 0.4.

case f = 0, Figure 7. The amplitude of the Shapiro steps
in the limits of very large and very small βL (the last
one corresponding to the XY or NS limit) tends, within
the accuracy of the numerical scheme, to the theoretical
amplitude of the Shapiro steps of isolated junctions [25].
In between there is a minimum for βL ' 5. We have also
performed simulations with another expression for the self
inductance, equation (10); In this case the minimum ap-
pears at higher value of βL, namely βL ' 8.

We have also checked that this minimum is peculiar of
the models with mutual inductance terms and is not ob-
served simulating the simpler NS model or next-neighbor
model. A check with truncated inductance matrix, for the
array dimensions used here, shows that to clearly observe
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the minimum at least a third order in truncated matrix
formulation is necessary. This can be viewed in Figure 9
where the height of step for βL = 6 and γrf = 0.4 is
reported for different truncated matrix in the 8 × 8 ar-
ray. In this figure the zero-order truncation corresponds
to the NS model, NT = 1 represents the next-neighbor
model, NT = 2 the next-next-neighbor and so on. Finally,
NT = 8 is the full matrix model for this array size. We
have checked, simulating the current distribution in the ar-
ray, that the results are similar to that denoted as “case i”
in Appendix C of [20]. From Figure 9 one can conclude
that a 30% decrease of the Shapiro step occurs only
when NT = 3. We have also simulated a larger array,
Nr = Nc = 11; in this case the Shapiro step decreases of
27% at NT = 3.

The minimum can be explained in terms of the inter-
nal degree of freedom arising in this region of the param-
eters: For high couplings the array is too rigid for any
internal dynamics thus giving a single junction behavior.
A progressive loss of correlation appears for lower cou-
plings, until in the very loose limit every phase is inde-
pendent of the others, giving larger steps.

In Figure 8 we show the behavior of the fully frustrated
case f = 1/2. In this case the amplitude is small for the
high coupling limit, and increases for lower coupling until
it reaches an asymptotic value. The reduced amplitude of
the step for low βL is due to the presence of a fractional
step at frequency ω/2. Indeed, while the amplitude of sub-
harmonic steps is almost always negligible in zero field, it
becomes relevant for f = 1/2 in the βL → 0 limit. This
contribution has been explicitly calculated for βL = 0 [12],
it can be explained by the synchronization of the field gen-
erated pattern with the rf current. The subharmonic steps
amplitude goes always to zero for loose coupling, therefore
for the fully frustrated case the mutual inductance terms
do not significantly change the overall picture.

To obtain further insight on the internal dynamics we
have plotted in Figure 10 the voltage across side vertical
junctions in the first four rows (the pattern is symmetrical
for the remaining four rows in 8×8 array) at the center
of the phase-locked step. First we have checked that for
small values of βL the voltage oscillations are practically
the same for all the junctions in the array and have all
the same phase respect to the drive due to the rigidity
imposed to array by a large coupling, 1/βL → ∞. We
begin our investigation by the intermediate coupling, as in
Figure 10a, where we have set βL = 6. The inner rows (©,
×, 2) are phase-locked, but not in-phase. Moreover, the
amplitude of the oscillations in the four rows is practically
the same. In Figure 10b (the loose coupling limit, βL =
1000) inner rows (©, ×, 2) are phase-locked (but not
in-phase) and voltage waveforms are very similar. This is
not the case for the first row (3): The voltage amplitude is
larger than others rows. We also note that spread in phases
is larger for the case of Figure 10b than that of Figure 10a.
In conclusion, increasing βL above unity implies a loss of
strictly coherent phase-locking between rows due to the
weakness of the coupling. For larger values of βL a further
progressive decoupling between different rows appears due
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Fig. 10. Voltage oscillations of first four vertical junctions
(first: 3, second: ©, third: 2, fourth: ×) for a square 8 × 8
array. Parameters of the simulations are: a) βL = 6, ω = 1,
γdc = 1.35; b) βL = 1000, ω = 1, γdc = 1.4. The dc bias has
been changed to bias the array always at the middle of the
step.

to the spread of both phases and amplitudes. The behavior
of the amplitude of the Shapiro steps indicates that in the
large βL limit the first rows of the array support the larger
oscillations.

To summarize this section, let us emphasize that the
analysis of the Shapiro steps amplitude just carried out
completes the one depicted by Phillips et al. in refer-
ence [15] for zero magnetic field. In reference [15] (see
Fig. (5c)) a scaling law for ∆γ vs. NβL (the parameter
λ⊥ = Φ0/2πI0µ0R used in the referred work is inversely
proportional to βL, and is roughly the penetration depth
of the magnetic field) is shown, corresponding to a range
in which βL < 2 (1 ≤ λ⊥ ≤ 5). In fact using equation (9)
one finds βL ' λ−1

⊥ or, using equation (10), βL ' 1.8λ−1
⊥ .

We claim here that for relatively small N and increasing
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βL above the values explored by Phillips et al. a new be-
havior is found. On the other hand it is clear that if a
scaling law would hold for all the values of βL, one should
get zero amplitude Shapiro steps for decoupled junctions,
which is obviously not the case. In the present paper we
have not investigated the behavior for larger sizes, we can
only speculate that in the case of larger arrays the mini-
mum might move to still higher βL values, and the behav-
ior here described can be very well compatible with the
scaling law observed in reference [15] for moderately low
values of λ⊥.

5 Conclusions

In this work we have addressed the role of the inductances
in relatively small two-dimensional arrays of Josephson
junctions. We have included mutual inductance effects
with an explicit scheme that is very efficient from a compu-
tational point of view for the systems sizes here considered
and does not require the use of sophisticated algorithms
to accelerate the convergence [15]. We have performed ex-
tended simulations to investigate the role of the coupling
parameter βL on the amplitude of the rf-induced steps in a
range not investigated by previous authors. We have found
that in this regime the amplitude of the steps of unfrus-
trated arrays decreases monotonically increasing βL from
0 (the XY limit) to the maximum value investigated so
far (βL ' 1); increasing further βL the amplitude of the
steps reaches a minimum for βL ' 6 and then increases
again up to the XY limit value. This behavior is plausi-
ble on the basis of some heuristic arguments, essentially
based on the idea that an extremely rigid array behaves
as a single junction, and so does also a very loose cou-
pling array. We have not been able to analytically predict
neither the βL value for which the minimum should occur
neither the minimal height of the Shapiro steps. Another
interesting feature, that presumably makes an analytical
insight very difficult, is that the presence of a minimum is
due to the mutual inductance terms. For βL values above
such minimum the dynamics of the junctions belonging to
internal rows is different from the behavior of the junc-
tions on the edge. We expect that the inspection of the
dynamics of the individual junctions could be the start-
ing point for an analytical insight. For the fully frustrated
case we have found a more regular behavior, that does not
differ significantly from the behavior predicted by models
that neglect mutual inductance terms.

Finally, we would like to speculate that some of
the results presented here could be used to identify an
appropriate range of parameters to achieve spontaneous
phase-locking of Josephson junctions arrays. In fact it
might be expected that when the parameters are such that
large amplitude Shapiro steps appear, also internal phase-
locking mechanisms could be more efficient. If this could
be proved, then we might suggest that arrays with small

inductance (βL < 1) are preferably to achieve the syn-
chronous motion of the junctions in the array, a dynamics
desirable for applications of Josephson junctions arrays as
microwave sources [26].
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Parmentier, who tragically died on January 2, 1997. We wish
to thank P. Carelli, G. Costabile, C. De Leo, R. Kleiner, S.
Pagano, and A. Ustinov for useful discussions and suggestions.
A.P. wishes to thank the EU for financial support through the
Structural Fund.
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